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Abstract
Using a new kinematical description of a quantum three-body problem in
hyperspherical coordinates, we generalize the results of I (Matveenko A V
and Czerwonko J 2001 J. Phys. A: Math. Gen. 34 9057) and derive two new
infinite series of matrix identities interconnecting geometrical angles, particle
masses and internal hyperspherical angles.

PACS numbers: 45.50.Jf, 03.65.−w, 21.45.+v

1. Introduction

Different fragmentation channels of the three-body system can be naturally treated in
hyperspherical coordinates (Avery 1989). Of course, in this case we need three sets of
hyperspherical angles and hyperspherical harmonics (HH). Simple interconnecting formulae
can be worked out for that purpose, some of them are derived in this paper. We first recall
that after separation of the centre-of-mass variables six coordinates remain. Three of them
can be taken to be the Euler angles; the corresponding rigid motion of the particle triangle is
then represented by Wigner D-functions. The remaining three coordinates are the hyperradius
R (length coordinate) and two angles that we will denote by ξ, η; they describe the internal
motion in the body-fixed reference system.

For rotational states having the exact value of the total angular momentum J we may
have either normal parity states with the corresponding quantum number of the total parity
p = (−1)J (we shall call them ε = 0 states) or abnormal parity ones defined by the relation
p = −(−1)J (we shall use ε = 1 in this case). Below we shall be able to introduce ε in a
formal way. The (Jp)-projected Hamiltonian for the system can then be written generally as

HJp = − 1

2M

1

R5

∂

∂R
R5 ∂

∂R
+

[�2(ξ, η)]Jp

ω̂

2MR2
+ V. (1)

In this expression M is the reduced mass to be defined below;
[
�2

i

]Jp

ω̂
is the matrix operator

of the grand angular momentum operator utilizing the body-fixed quantization axis ω̂,
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it depends on two internal angles but accounts for all the kinetic energy in five hyperangles.
Recently, we have introduced special minimal Jp subsets of HH as a pure rotational part
of primitives in the variational treatment of three-body states of that symmetry. These HH,
being eigenfunctions of the matrix operator

[
�2

i

]Jp

ω̂
, are, of course, vector-column functions

in two variables. It happens that we have exactly J + ε linear independent HH of the J + ε

length in our subsets for (J + ε) ∗ (J + ε) operator
[
�2

i

]Jp

ω̂
. This fact allows for easy

manipulations with the corresponding HH solution matrices which can be further given in
a simple triangular form for a special choice of the body-fixed quantization axis. We have
already exploited this approach and derived the product form for the Wigner rotation matrices
(Matveenko 1999) and identities including the associated Legendre polynomials of the same
angle (Matveenko and Fukuda 1998). We are also pleased to note that Esry et al (2001) have
independently introduced the same minimal subsets of HH to derive the threshold laws for
three-body recombination.

More recently (Matveenko and Czerwonko 2001, I), we have presented matrix identities
interconnecting triangle angles, particle masses and internal hyperspherical angles. The
variational calculations of some three-body Coulomb systems using these identities have been
just published (Matveenko et al 2001). The results of I will be generalized in the present paper
utilizing the different choice of the body-fixed quantization axis. Otherwise, the structure of
the paper is similar to that of I: we give the simplest nontrivial example of our new identities
in the introduction; mathematical details are given in section 2; the third section presents new
results and section 4 contains our conclusions.

For a system of three particles with masses mi (i = 1, 2, 3) we have three sets of Jacobi
vectors {xi , yi}. As the basis in the particle plane we choose the set {i = 3}: the first Jacobi
coordinate x3 = x to be the vector from particle 2 to particle 1, with the reduced mass M3 = M;
and the second Jacobi coordinate y3 = y from the centre-of-mass of (1 + 2) to particle 3, with
the reduced mass µ3 = µ. For the reduced masses in the {i} channel we have the well-known
expressions

1

Mi

= 1

mj

+
1

mk

1

µi

= 1

mi

+
1

mj + mk

. (2)

Accordingly, three mass parameters: µ,M and κ = (m2 − m1)/(m1 + m2), will be basic in
our approach; using them {i = 2} Jacobi pair (mass-weighted) can be found from the equality(

x̂2

ŷ2

)
=
(−cos φ23 −sin φ23

sin φ23 −cos φ23

)(
x̂3

ŷ3

)
(3)

with a notation chain

c4
2 = 4c

/
ρ2

2 c4
3 = 1/4c sin2 φ23 = 1/ρ2

and c = µ/4M , ρ2 = 1 + c(1 + κ)2. The transformation (3) includes the orthogonal matrix
of the so-called kinematic rotation by the angle φ23 (Raynal and Revai 1970). The regular
hyperspherical angles are defined for the {i} channel by

cos θi = (x̂i ŷi ) tan αi = M
1/2
i xi

µ
1/2
i yi

(4)

and the hyperradius R will be defined by

R =
(
x2 +

µ

M
y2
)1/2

. (5)
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The identities discussed in I were of the type(
cos θ ′

23 sin θ ′
23

−sin θ ′
23 cos θ ′

23

)(
sin α2 cos α2 cos θ2

0 −cos α2 sin θ2

)

=
(

sin α3 cos α3 cos θ3

0 −cos α3 sin θ3

)(−cos φ23 sin φ23

−sin φ23 − cos φ23

)
. (6)

The geometrical background of (6) is: the triangular solution matrix of vector-column HH
in the channel {i = 2}, see the next section for the details, if multiplied from the left by the
rotation matrix (changing the quantization axis), equals the equivalent solution matrix but in
the channel {i = 3}, multiplied from the right by the matrix of kinematic rotation. Here,
θ ′

23 = arccos(x̂2x̂3) so that we have x̂2 as the quantization axis before the rotation and x̂3 after
the rotation. Actually, the above relation was shown to be the (J = 1, p = −1) example of
the general identity

d̂Jp(θ ′
23)‖p(α2, θ2)‖Jp = ‖p(α3, θ3)‖JpRJp(φ23) (7)

where the matrix elements of the parity-projected Wigner d̂Jp(θ) matrices are defined by
Matveenko and Fukuda (1996) as

d
Jp

mm′ = 1

(1 + δm0)(1 + δm′0)

(
dJ

mm′ + p(−1)J+m′
dJ

m,−m′

)
and where dJ

mm′ are matrix elements of the usual Wigner-rotation matrix (Varshalovich et al
1998). Orthogonal matrices RJp were introduced by Raynal and Revai (1970) and
‖p(αi, θi)‖Jp = ‖y(αi, θi)‖Jp

ω̂=xi
are the upper triangle solution matrices with vector-column

HH utilizing xi as a body-fixed quantization axis (HH solution matrices ‖yl(αi, θi)‖Jp

ω̂ will
be defined later for the arbitrary choice of the quantization axis ω̂ in the triangle plane).
While the regular Raynal–Revai transformation allows one to interconnect five-dimensional
HH expressed in different Jacobi-channel coordinates, we relate (7) by the rotation in the
particle plane of two special degenerate subsets of HH. It is worth noting that the derivation
of (7) is strongly related to a formal quantum description of a free three-body problem in
hyperspherical coordinates (Matveenko 2001).

To compare with (6), the (J = 1, p = −1) example of the matrix identities derived in
this paper reads(

cos θ ′′
23 sin θ ′′

23

−sin θ ′′
23 cos θ ′′

23

)(
sin α2 cos θ2 cos α2

sin α2 sin θ2 0

)

=
(

sin α3 cos θ3 cos α3

sin α3 sin θ3 0

)(−cos φ23 sin φ23

−sin φ23 −cos φ23

)
(8)

where now cos θ ′′
23 = (ŷ2ŷ3) so that we have the second Jacobi vector ŷ2 as the quantization

axis before the rotation and, respectively, ŷ3 after the rotation. Generalizing (8) for HH of the
arbitrary symmetry we will have the matrix identity

d̂Jp(θ ′′
23)‖p̄(α2, θ2)‖Jp = ‖p̄(α3, θ3)‖JpRJp(φ23) (9)

where ‖p̄(αi, θi)‖Jp = ‖y(αi, θi)‖Jp
yi

. One may expect that ‖p̄(αi, θi)‖Jp and ‖p(αi , θi)‖Jp

HH solution matrices are simply connected by the parity preserving rotation in the particle
plane. Really, we have a rather peculiar identity that transforms the triangular matrix with
respect to the main diagonal into the triangular one with respect to the second one (in
Matveenko (1999) we have found that d̂Jp(θi) does not depend on α, see also below)

d̂Jp(−θi)‖p(αi , θi)‖Jp = ‖p̄(αi, θi)‖Jp (10)
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which for the (J = 1, p = −1) case will be(
cos θi −sin θi

sin θi cos θi

)(
sin αi cos αi cos θi

0 −cos αi sin θi

)
=
(

sin αi cos θi cos αi

sin αi sin θ3 0

)
. (11)

The structure of the ‖p̄(αi, θi)‖Jp matrix (upper left triangle one) is completely defined by
‖p(αi, θi)‖Jp (Matveenko 1999) and will be discussed in the next section.

The derivation of identities will be based on the properties of the well-known three-body
HH which, if written in the body-fixed frame, can be factorized into an extrinsic part depending
on three Euler-rotation angles and an intrinsic one that depends on two internal variables

YJpMJ

KlL (αi, θi , γ̃ , β̃, α̃) =
J∑

m′=ε

y
Jp

KlLm′(αi, θi)B
JpMJ

m′ (γ̃ , β̃, α̃). (12)

Here, we have introduced the quantum numbers of the grand angular momentum K and those of
the usual angular momentum l = −iy × ∇y, L = −ix × ∇x; MJ and m′ are projections of the
total angular momentum J. The body-fixed z-axis is specified by the set {α̃, β̃, γ̃ }, and B

JpMJ

m′

are the parity preserving combinations of the Wigner D-functions (Matveenko and Fukuda
1996).

In what follows, we shall manipulate with two {i = 2} and {j = 3} ‘physical’
(Matveenko and Fukuda 1998) subsets of HH satisfying either K = J (normal parity states)
or K = J + 1 (abnormal ones) assumption, being equivalent to the conditions introduced
earlier by Schwartz (1961)

L + l = J if {p = (−)J } or L + l = J + 1 if {p = −(−)J }. (13)

2. Intrinsic hyperspherical harmonics (IHH)

Using (13) we may note that quantum numbers L and K are not needed to classify the intrinsic
part of HH y

Jp

KlLm′(αi, θi) (12) and specify the IHH ‖yl(αi, θi)‖Jp

ω̂ as the vector-column solving
the matrix differential equation in two variables (Matveenko and Fukuda 1998)([

�2
i

]Jp

ω̂
− K(K + 4)

)‖yl(αi, θi)‖Jp

ω̂ = 0 K − J = ε � l � J (14)

where
[
�2

i

]Jp

ω̂
is the hyperangular part of the total three-body kinetic energy operator (1)

projected onto the states of fixed total angular momentum J and parity p. With the definition
ε = K − J the above eigenvalue equation works for states of any parity. After introducing
the auxiliary vector-column ‖pl(αi, θi)‖Jp for all possible l = ε, . . . , J

‖pl(αi, θi)‖Jp = sinL αi cosl αi√
l!! L!!




(−1)εU
Jpl

εL P ε
l (θi)

. . .

(−1)mU
Jpl

mL Pm
l (θi)

. . .

(−1)lU
Jpl

lL P l
l (θi)

0
. . .

0




m = ε, . . . , l{J } (15)

we are ready to write the basic entity of the approach, the vector-column IHH ‖yl(αi, θi)‖Jp

ω̂ ,
in the factorized form

‖yl(αi, θi)‖Jp

ω̂ = dJp(ωi)‖pl(αi, θi)‖Jp (16)
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with an arbitrary choice of the quantization axis within the particle plane (direction ω̂). Here,
cos ωi = ω̂ · x̂i , dJp(ωi) is the parity preserving combination of the Wigner rotation matrices
as was discussed above. In (15) Pm

l (θi) are the normalized associated Legendre polynomials;
the coefficients

U
Jpl

mL = p(−)J+l+m
√

2 − δ0m(l, J,−m,m|L, 0)

(
l∑

m=0

(
U

Jpl

mL

)2
= 1

)
(17)

were defined by Chang and Fano (1972). Though the index m′ can be formally bigger than
l, the components of (15) for m′ > l are equal to zero, which allows one to give the solution
matrices composed from ‖pl(αi, θi)‖Jp (ω̂i = 0) in the triangular form.

As we have demonstrated earlier (Matveenko 1999), for each Jacobi channel there exists
one more coordinate system, the one with ω̂ = ŷi , for which case the solution matrix is simple:
of the left-upper triangular form (triangular with respect to the second diagonal). It will be
‖p̄(αi, θi)‖Jp, as introduced earlier, and can be calculated either using (10) or the prescription
from Matveenko (1999) which reads: starting with the solution matrix ‖p(αi, θi)‖Jp we first
interchange its columns by reflection with respect to the central line, and substitute αi by
αi − π/2 and θi by −θi . Using this rule we actually produced from (6) the example (8)
discussed in the introduction.

In our previous paper (Matveenko and Czerwonko 2001) one can find as an example
all (2 ∗ 2) matrices that are involved in the discussion of the normal parity HH having
(J = 1, p = −1) symmetry.

3. New hyper-trigonometry identities

Formally, there are only minor details that make the treatment of the normal and abnormal
parity cases different though, of course, we get different identities in the two cases. This
statement does not work in only one case: the abnormal parity case for the states of
(J = 2, p = −1) symmetry just reproduces the results of the normal (J = 1, p = −1)

states (we get (2 ∗ 2) matrices for both cases, the solution matrices are different but some
cancellation occurs in (9)) and we arrive at (8).

We shall start with the normal parity case: setting p = (−)J and using (p = n) index
for the parity-dependent expressions. The body-fixed quantization axis (ω̂ = ŷ3) will be used
in order to make the analysis simpler without losing generality. As has already been noted,
the corresponding solution matrices originating in i = {2} and i = {3} Jacobi channels are:
‖y(α2, θ2)‖Jp

ŷ = dJp(θ ′′
23)‖p̄(α2, θ2)‖Jp and ‖y(α3, θ3)‖Jp

ŷ = ‖p̄(α3, θ3)‖Jp, respectively. Any

IHH ‖yl(α2, θ2)‖Jp

ŷ can be expressed as a linear combination of ‖yl′(α3, θ3)‖Jp

ŷ , (ε = 0 �
l, l′ � J ); the corresponding transformation matrix RJp has been introduced by Raynal and
Revai (1970) for five-dimensional HH in the ordinary space-fixed frame. In our case, for
vector-column IHH depending only on two variables (15), the proper relation will be

d̂Jn(θ ′′
23)‖p̄(α2, θ2)‖Jn = ‖p̄(α3, θ3)‖Jn

∥∥dJ/2
−J/2+l,−J/2+l′(2φ23)

∥∥ (l, l′ = 0, . . . , J )

(18)

where all involved matrices have the (J + 1) ∗ (J + 1) dimension.
The left upper triangle matrices ‖p̄(αi, θi)‖Jn with matrix elements p̄Jn

lm (αi, θi) have their
columns numbered by the quantum number of the pair angular momentum l (0 � l � J )

while its projection m onto the body-fixed yi axis serves for row numbering (only p̄Jn
lm (αi, θi)

with 0 � m � l are nonzero). Two more matrices, normal parity rotation matrix d̂Jn and
the usual Wigner rotation matrix

∥∥dJ/2
−J/2+l,−J/2+l′

∥∥, are orthogonal. We have used in (18) the
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result derived by Raynal (1972) allowing one to express Raynal–Revai matrices for the lower
extreme value of the grand angular momentum K = J in terms of the usual Wigner rotation
matrices: DJn(φ) = ∥∥dJ/2

−J/2+l,−J/2+l′(2φ)
∥∥, (0 � l, l′ � J ). The coefficients (17), composing

(15) for the normal parity case, read

UJnl
mL =

(
2

1 + δm0

(2l)!(2L + 1)!(J − m)!(J + m)!

(2J + 1)!(l − m)!(l + m)!(L!)2

)1/2

L = J − l. (19)

Using the triangular structure of ‖p̄(αi, θi)‖Jn, and analytic expressions for the matrix elements
of the first row (first column) of d̂Jn (Matveenko 1999) and

∥∥dJ/2
m,m′(φ)

∥∥ (Varshalovich et al
1998), we present the four simplest scalar identities for the corner matrix elements of the
matrix equation (18). For the [0, 0] one (the upper left corner of (18)) we have the most
complicated expression; it includes two summations

J∑
m=0

2

√
2

(1 + δ0m)(2J + 1)J !!
PJ

m(θ ′′
23) sinJ (α2)P

J
m(θ2)

=
J∑

l=0

p̄Jn
J−l,0(α3, θ3)

√
J !

l!(J − l)!
cosJ−l φ23 sinl (−φ23). (20)

The [0, J ] case is simpler; only one summation is needed

1√
(2J + 1)J !!

cosJ α2P
0
J (θ ′′

23) =
J∑

l=0

p̄Jn
J,J−l (α3, θ3)

√
J !

l!(J − l)!
sinJ−l φ23 cosl φ23. (21)

The case [J, 0] is similar to the [0, J ] one, it includes one summation:

(2J − 1)!!√
2J !!(2J + 1)

sinJ α3 cosJ φ23 sinJ (θ3) =
J∑

m=0

dJn
Jm(θ ′′

23)p̄
Jn
Jm(α2, θ2). (22)

Moreover, the last [J, J ] corner provides the simplest result

dJn
J0 (θ ′′

23)p̄
Jn
00 (α2, θ2) = p̄Jn

JJ (α3, θ3)d
J/2
−J/2−J/2(2φ23). (23)

Using explicitly (15), see also (Matveenko and Fukuda 1996, Varshalovich et al 1998), we get

p̄Jn
00 (α2, θ2) = cosJ α2/(

√
2J !!)

p̄Jn
JJ (α3, θ3) = (2J − 1)!!

√
1

(2J )!J !!
sinJ α3 sinJ θ3

dJn
J0 (β) =

√
2(2J )!

(J )!(J )!
(−1/2 sin β)J

d
J/2
−J/2−J/2(2φ23) = cosJ (φ23).

After substituting the above expressions into (23) and using

aJ =
(

1

2

)J
(2J )!

J !(2J − 1)!!
≡ 1

we arrive at the much simpler form

(cos α2 sin(−θ23))
J = (sin α3 sin θ3 sin φ23)

J .
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It means that (23) is J -independent thus coinciding with the [1, 1] element of (8). Similarly,
it can be checked that putting J = 1 into equations (20)–(22) one is reproducing the
corresponding scalar equalities from the matrix equation (8).

For the abnormal parity states, i.e. IHH defined by the conditions K = J + 1 and
p = −(−)J , we get similarly the matrix identities interconnecting IHH in the i = {2} and
i = {3} Jacobi channels

d̂Ja(θ ′′
23)‖p̄(α2, θ2)‖Ja = ‖p̄(α3, θ3)‖Ja

∥∥d(J−1)/2
−(J+1)/2+l,−(J+1)/2+l′(2φ23)

∥∥
(ε = 1 � l, l′ � J ) (24)

where now we have to deal with the (J ∗ J ) matrices having 1 � l,m � J numbering
columns and rows of ‖p̄(αi, θi)‖Ja (as in the normal parity case p̄Ja

lm (αi, θi) matrix elements
are nonzero only for 1 � m � l). Here, (24), once again we have used the result of Raynal
(1973), this time for the lowest possible value of the grand angular momentum K = J + 1
in which case RJa(φ23) once again can be given as a regular Wigner rotation matrix. The
Chang–Fano coefficients (17) are now expressed by

UJal
mL = 2Lm

(
2(2L + 1)

(2l − 1)!(2L − 1)!(J − m)!(J + m)!

(2J + 2)!(l − m)!(l + m)!(L!)2

)1/2

L = J − l + 1.

(25)

The four simplest scalar identities for the corner matrix elements of (23) will read

[1, 1] →
J∑

m=1

dJa
1m(θ ′′

23)p̄
Ja
Jm(α2, θ2)

=
J∑

l=1

U
Ja,J−l+1
1,l sinJ−l+1 α3 cosl α3√

(J − l + 1)!!(l)!!
PJ−l+1(θ3)

×
√

(J − 1)!

l!(J − l − 1)!
cosJ−l−1 φ23 sin(−φ23)

l (26)

[1, J ] → dJa
11 (θ ′′

23)

√
3

2
√

J !!
cosJ α2 sin α2 sin θ2

=
J∑

l=1

p̄Ja
J−l+1,1(α3, θ3)

√
(J − 1)!

l!(J − l − 1)!
cosl φ23 sin(−φ23)

J−l−1 (27)

[J, 1] → (2J − 1)!!

√
3J

(J + 1)(2J )!J !!
cos α3 sinJ α3 sinJ θ3 cosJ−1(φ23)

=
J∑

m=1

dJa
Jm(θ ′′

23)p̄
Ja
Jm(α2, θ2) (28)

[J, J ] → dJa
J1 (θ ′′

23)p̄
Ja
11 (α2, θ2) = p̄Ja

JJ (α3, θ3)d
(J−1)/2
−(J−1)/2(J−1)/2(2φ23). (29)

Here again, the [J, J ] result is the simplest one and does not depend on J . Actually, using
(15) and the prescriptions for building p̄

Jp

lm (αi, θi) mentioned above we can get

p̄Ja
11 (α2, θ2) =

√
3 cosJ α2 sin α2 sin θ2/(2

√
J !!)

p̄Ja
JJ (α3, θ3) = (2J − 1)!!

√
3J

(J + 1)(2J )!J !!
cos α3 sinJ α3 sinJ θ3
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and can derive from Matveenko and Fukuda (1996) and Varshalovich et al (1998)

dJa
J1 (β) =

√
(2J )!

(J + 1)!(J − 1)!
(−1/2 sin β)J−1 d

(J−1)/2
−(J−1)/2(J−1)/2(2φ) = sinJ−1(φ).

On substituting the above results into (29) and using the hyperspherical sin-theorem
(Matveenko and Czerwonko 2001):

sin α2 cos α2 sin θ2 = sin α3 cos α3 sin θ3

we shall just reproduce the normal parity simple case [J, J ] (23). Both matrix equalities, (18)
and (24), were also checked numerically. For this purpose we have introduced hyperspheroidal
coordinates ξ = (x1 + x2)/x3, η = (x1 − x2)/x3 (Matveenko and Fukuda 1996) and expressed
in their terms all auxiliary variables entering the above identities. As an example we just note
that the channel-independent hyper-sin identity then reads

cos αi sin αi sin θi =
√

c(ξ2 − 1)(1 − η2)

1 + c(ξ2 + η2 − 2κξη + κ2 − 1)
(i = 1, 2, 3). (30)

Constants c, κ were defined in the introduction.

4. Conclusions

This paper completes our analysis of subsets of hyperspherical harmonics IHH, which, if
expressed (for any Jacobi channel) in one of the two available body-fixed quantization axes,
are simple vector-column functions in two variables (only associated Legendre polynomials of
a special normalization and sin(cos)-functions are needed). Any function from the degenerate
set of IHH in the {ith}-channel can be expressed as a linear combination of IHH in the {jth}-
channel. It gives an obvious ground for manipulation with classical mathematical functions of
different arguments: geometrical angles of the particle triangle, regular hyperspherical angles
αi, θ1 (4), which depend on both particle masses and interparticle distance, and angles of the
kinematic rotation φij (3) depending on particle masses. For any given value of the total
angular momentum of a three-body system the underlying matrix expressions derived in this
paper, (18) and (24), provide (J +1)2 and J 2 scalar equalities, respectively. Roughly speaking,
all are new, only a few of them can easily be derived using standard trigonometry tools but
only the simplest of them may be of some independent analytic value. Matveenko et al (2001)
have used identities of that kind in realistic three-body calculations, utilizing hyperspherical
coordinates.

An example of an analytic use of the derived identities can be found in our recent
discussion of the semianalytic description of the highly rotational states of antiprotonic He
(Matveenko and Alt 2000). In that paper, we were able to resolve the Coriolis coupling
analytically using the angular part of the variational primitives in the form (15). In this case,
the matrix structure of the Schrödinger operator (see equation (1)) can be reduced to the
calculation of the scalar analytic function ((J, p) pair is fixed)

σ
ij

ll′ (ξ, η) =
∑

plm(αi, θi)pl′m′(αj , θj )d
Jp

mm′(ωij ) =
∑

p̄lm(αi, θi)p̄l′m′(αj , θj )d
Jp

mm′(ω̄ij )

(31)

with cos ωij = x̂i · x̂j and cos ω̄ij = ŷi · ŷj , respectively. As at the end of section 3, before
starting calculations we are to introduce a pair of global hyperspherical angles ξ, η common
to all Jacobi channels. Actually, σ

ij

ll′ is the matrix element of the ‘angular form-factor matrix’[‖yi‖Jp
ω

]T [‖yj‖Jp
ω

]
(32)
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which, being a physical quantity, should not depend on the choice of the body fixed quantization
axis ω̂. Our new identities just reflect the opportunity of using different coordinate systems
for different physical three-body problems.

A peculiar feature of the identities (18) and (24), which has been already mentioned in
our previous paper I, is that they relate Wigner rotation matrices of two types: regular ones∥∥dJ

mm′(θ)
∥∥, as defined by Varshalovich et al (1998), and parity-projected ones d̂Jp(θ). The

latter can be defined in the factorized form, recently derived in a similar context by Matveenko
(1999) and by Manakov et al (2000) using a different technique.
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